您的位置:首页 > 素材教程 > 详情

pil压缩图片-python颜色压缩的结果颜色比保存颜色深

原创:素材网 2 年前

python:PIL图像处理

PIL (Python Imaging Library)

Python图像处理库,该库支持多种文件格式,提供强大的图像处理功能。

PIL中最重要的类是Image类,该类在Image模块中定义。

从文件加载图像:

如果成功,这个函数返回一个Image对象。现在你可以使用该对象的属性来探索文件的内容。

format 属性指定了图像文件的格式,如果图像不是从文件中加载的则为 None 。

size 属性是一个2个元素的元组,包含图像宽度和高度(像素)。

mode 属性定义了像素格式,常用的像素格式为:“L” (luminance) - 灰度图, “RGB” , “CMYK”。

如果文件打开失败, 将抛出IOError异常。

一旦你拥有一个Image类的实例,你就可以用该类定义的方法操作图像。比如:显示

( show() 的标准实现不是很有效率,因为它将图像保存到一个临时文件,然后调用外部工具(比如系统的默认图片查看软件)显示图像。该函数将是一个非常方便的调试和测试工具。)

接下来的部分展示了该库提供的不同功能。

PIL支持多种图像格式。从磁盘中读取文件,只需使用 Image 模块中的 open 函数。不需要提供文件的图像格式。PIL库将根据文件内容自动检测。

如果要保存到文件,使用 Image 模块中的 save 函数。当保存文件时,文件名很重要,除非指定格式,否则PIL库将根据文件的扩展名来决定使用哪种格式保存。

** 转换文件到JPEG **

save 函数的第二个参数可以指定使用的文件格式。如果文件名中使用了一个非标准的扩展名,则必须通过第二个参数来指定文件格式。

** 创建JPEG缩略图 **

需要注意的是,PIL只有在需要的时候才加载像素数据。当你打开一个文件时,PIL只是读取文件头获得文件格式、图像模式、图像大小等属性,而像素数据只有在需要的时候才会加载。

这意味着打开一个图像文件是一个非常快的操作,不会受文件大小和压缩算法类型的影响。

** 获得图像信息 **

Image 类提供了某些方法,可以操作图像的子区域。提取图像的某个子区域,使用 crop() 函数。

** 复制图像的子区域 **

定义区域使用一个包含4个元素的元组,(left, upper, right, lower)。坐标原点位于左上角。上面的例子提取的子区域包含300x300个像素。

该区域可以做接下来的处理然后再粘贴回去。

** 处理子区域然后粘贴回去 **

当往回粘贴时,区域的大小必须和参数匹配。另外区域不能超出图像的边界。然而原图像和区域的颜色模式无需匹配。区域会自动转换。

** 滚动图像 **

paste() 函数有个可选参数,接受一个掩码图像。掩码中255表示指定位置为不透明,0表示粘贴的图像完全透明,中间的值表示不同级别的透明度。

PIL允许分别操作多通道图像的每个通道,比如RGB图像。 split() 函数创建一个图像集合,每个图像包含一个通道。 merge() 函数接受一个颜色模式和一个图像元组,然后将它们合并为一个新的图像。接下来的例子交换了一个RGB图像的三个通道。

** 分离和合并图像通道 **

对于单通道图像, split() 函数返回图像本身。如果想处理各个颜色通道,你可能需要先将图像转为RGB模式。

resize() 函数接受一个元组,指定图像的新大小。

rotate() 函数接受一个角度值,逆时针旋转。

** 基本几何变换 **

图像旋转90度也可以使用 transpose() 函数。 transpose() 函数也可以水平或垂直翻转图像。

** transpose **

transpose() 和 rotate() 函数在性能和结果上没有区别。

更通用的图像变换函数为 transform() 。

PIL可以转换图像的像素模式。

** 转换颜色模式 **

PIL库支持从其他模式转为“L”或“RGB”模式,其他模式之间转换,则需要使用一个中间图像,通常是“RGB”图像。

ImageFilter 模块包含多个预定义的图像增强过滤器用于 filter() 函数。

** 应用过滤器 **

point() 函数用于操作图像的像素值。该函数通常需要传入一个函数对象,用于操作图像的每个像素:

** 应用点操作 **

使用以上技术可以快速地对图像像素应用任何简单的表达式。可以结合 point() 函数和 paste 函数修改图像。

** 处理图像的各个通道 **

注意用于创建掩码图像的语法:

Python计算逻辑表达式采用短路方式,即:如果and运算符左侧为false,就不再计算and右侧的表达式,而且返回结果是表达式的结果。比如 a and b 如果a为false则返回a,如果a为true则返回b,详见Python语法。

对于更多高级的图像增强功能,可以使用 ImageEnhance 模块中的类。

可以调整图像对比度、亮度、色彩平衡、锐度等。

** 增强图像 **

PIL库包含对图像序列(动画格式)的基本支持。支持的序列格式包括 FLI/FLC 、 GIF 和一些实验性的格式。 TIFF 文件也可以包含多个帧。

当打开一个序列文件时,PIL库自动加载第一帧。你可以使用 seek() 函数 tell() 函数在不同帧之间移动。

** 读取序列 **

如例子中展示的,当序列到达结尾时,将抛出EOFError异常。

注意当前版本的库中多数底层驱动只允许seek到下一帧。如果想回到前面的帧,只能重新打开图像。

以下迭代器类允许在for语句中循环遍历序列:

** 一个序列迭代器类 **

PIL库包含一些函数用于将图像、文本打印到Postscript打印机。以下是一个简单的例子。

** 打印到Postscript **

如前所述,可以使用 open() 函数打开图像文件,通常传入一个文件名作为参数:

如果打开成功,返回一个Image对象,否则抛出IOError异常。

也可以使用一个file-like object代替文件名(暂可以理解为文件句柄)。该对象必须实现read,seek,tell函数,必须以二进制模式打开。

** 从文件句柄打开图像 **

如果从字符串数据中读取图像,使用StringIO类:

** 从字符串中读取 **

如果图像文件内嵌在一个大文件里,比如 tar 文件中。可以使用ContainerIO或TarIO模块来访问。

** 从tar文档中读取 **

** 该小节不太理解,请参考原文 **

有些解码器允许当读取文件时操作图像。通常用于在创建缩略图时加速解码(当速度比质量重要时)和输出一个灰度图到激光打印机时。

draft() 函数。

** Reading in draft mode **

输出类似以下内容:

注意结果图像可能不会和请求的模式和大小匹配。如果要确保图像不大于指定的大小,请使用 thumbnail 函数。

Python2.7 教程 PIL

Python 之 使用 PIL 库做图像处理

来自

怎么样在Python编程中使用Pillow来处理图像

安装

刚接触Pillow的朋友先来看一下Pillow的安装方法,在这里我们以Mac OS环境为例: (1)、使用 pip 安装 Python 库。pip 是 Python 的包管理工具,安装后就可以直接在命令行一站式地安装/管理各种库了(pip 文档)。

$ wget

tar xzf pip-0.7.2.$ cd pip-0.7.2$ python install

(2)、使用 pip 下载获取 Pillow:

$ pip install pillow

(3)、安装过程中命令行出现错误提示:”error: command ‘clang' failed with exit status

1”。上网查阅,发现需要通过 Xcode 更新 Command Line Tool。于是打开

Xcode->Preferences->Downloads-Components选项卡。咦?竟然没了 Command Line

Tools。再查,发现 Xcode 5 以上现在需要用命令行安装:

$ xcode-select ―install

系统会弹出安装命令行工具的提示,点击安装即可。

此时再 pip install pillow,就安装成功了。

pip freeze 命令查看已经安装的 Python 包,Pillow 已经乖乖躺那儿了。

好了,下面开始进入教程~

Image类

Pillow中最重要的类就是Image,该类存在于同名的模块中。可以通过以下几种方式实例化:从文件中读取图片,处理其他图片得到,或者直接创建一个图片。

使用Image模块中的open函数打开一张图片:

>>> from PIL import Image>>> im = ("")

如果打开成功,返回一个Image对象,可以通过对象属性检查文件内容

>>> from __future__ import print_function>>> print(, , )

PPM (512, 512) RGB

format属性定义了图像的格式,如果图像不是从文件打开的,那么该属性值为None;size属性是一个tuple,表示图像的宽和高(单位为像素);mode属性为表示图像的模式,常用的模式为:L为灰度图,RGB为真彩色,CMYK为pre-press图像。

如果文件不能打开,则抛出IOError异常。

当有一个Image对象时,可以用Image类的各个方法进行处理和操作图像,例如显示图片:

>>> ()

ps:标准版本的show()方法不是很有效率,因为它先将图像保存为一个临时文件,然后使用xv进行显示。如果没有安装xv,该函数甚至不能工作。但是该方法非常便于debug和test。(windows中应该调用默认图片查看器打开)

读写图片

Pillow库支持相当多的图片格式。直接使用Image模块中的open()函数读取图片,而不必先处理图片的格式,Pillow库自动根据文件决定格式。

Image模块中的save()函数可以保存图片,除非你指定文件格式,那么文件名中的扩展名用来指定文件格式。

图片转成jpg格式

from __future__ import print_functionimport os, sysfrom PIL import Imagefor infile in [1:]: f, e = (infile) outfile = f + ".jpg" if infile != outfile: try: (infile).save(outfile) except IOError: print("cannot convert", infile)

save函数的第二个参数可以用来指定图片格式,如果文件名中没有给出一个标准的图像格式,那么第二个参数是必须的。

创建缩略图

from __future__ import print_functionimport os, sysfrom PIL import Imagesize = (128, 128)for infile in [1:]: outfile = (infile)[0] + ".thumbnail" if infile != outfile: try: im = (infile) (size) (outfile, "JPEG") except IOError: print("cannot create thumbnail for", infile)

必须指出的是除非必须,Pillow不会解码或raster数据。当你打开一个文件,Pillow通过文件头确定文件格式,大小,mode等数据,余下数据直到需要时才处理。

这意味着打开文件非常快,与文件大小和压缩格式无关。下面的程序用来快速确定图片属性:

确定图片属性

from __future__ import print_functionimport sysfrom PIL import Imagefor infile in [1:]: try: with (infile) as im: print(infile, , "%dx%d" % , ) except IOError: pass

裁剪、粘贴、与合并图片

Image类包含还多操作图片区域的方法。如crop()方法可以从图片中提取一个子矩形

从图片中复制子图像

box = () #直接复制图像box = (100, 100, 400, 400)region = (box)

区域由4-tuple决定,该tuple中信息为(left, upper, right, lower)。 Pillow左边系统的原点(0,0)为图片的左上角。坐标中的数字单位为像素点,所以上例中截取的图片大小为300*300像素^2。

处理子图,粘贴回原图

region = (_180)(region, box)

将子图paste回原图时,子图的region必须和给定box的region吻合。该region不能超过原图。而原图和region的mode不需要匹配,Pillow会自动处理。

另一个例子

Rolling an imagedef roll(image, delta): "Roll an image sideways" image = () #复制图像 xsize, ysize = delta = delta % xsize if delta == 0: return image part1 = ((0, 0, delta, ysize)) part2 = ((delta, 0, xsize, ysize)) (part2, (0, 0, xsize-delta, ysize)) (part1, (xsize-delta, 0, xsize, ysize)) return image

分离和合并通道

r, g, b = ()im = ("RGB", (b, g, r))

对于单通道图片,split()返回图像本身。为了处理单通道图片,必须先将图片转成RGB。

几何变换

Image类有resize()、rotate()和transpose()、transform()方法进行几何变换。

简单几何变换

out = ((128, 128))out = (45) # 顺时针角度表示

置换图像

out = (_LEFT_RIGHT)out = (_TOP_BOTTOM)out = (_90)out = (_180)out = (_270)

transpose()和象的rotate()没有性能差别。

更通用的图像变换方法可以使用transform()

模式转换

convert()方法

模式转换

im = ('').convert('L')

图像增强

Filter ImageFilter模块包含很多预定义的增强filters,通过filter()方法使用

应用filters

from PIL import ImageFilterout = ()

像素点处理

point()方法通过一个函数或者查询表对图像中的像素点进行处理(例如对比度操作)。

像素点变换

# multiply each pixel by 1.2out = (lambda i: i * 1.2)

上述方法可以利用简单的表达式进行图像处理,通过组合point()和paste()还能选择性地处理图片的某一区域。

处理单独通道

# split the image into individual bandssource = ()R, G, B = 0, 1, 2# select regions where red is less than 100mask = source[R].point(lambda i: i < 100 and 255)# process the green bandout = source[G].point(lambda i: i * 0.7)# paste the processed band back, but only where red was < 100source[G].paste(out, None, mask)# build a new multiband imageim = (, source)

注意到创建mask的语句:

mask = source[R].point(lambda i: i < 100 and 255)

该句可以用下句表示

imout = (lambda i: expression and 255)

如果expression为假则返回expression的值为0(因为and语句已经可以得出结果了),否则返回255。(mask参数用法:当为0时,保留当前值,255为使用paste进来的值,中间则用于transparency效果)

高级图片增强

对其他高级图片增强,应该使用ImageEnhance模块 。一旦有一个Image对象,应用ImageEnhance对象就能快速地进行设置。 可以使用以下方法调整对比度、亮度、色平衡和锐利度。

图像增强

from PIL import ImageEnhanceenh = (im)(1.3).show("30% more contrast")

动态图

Pillow支持一些动态图片的格式如FLI/FLC,GIF和其他一些处于实验阶段的格式。TIFF文件同样可以包含数帧图像。

当读取动态图时,PIL自动读取动态图的第一帧,可以使用seek和tell方法读取不同郑

from PIL import Imageim = ("")(1) # skip to the second frametry: while 1: (()+1) # do something to imexcept EOFError: pass # end of sequence

当读取到最后一帧时,Pillow抛出EOFError异常。

当前版本只允许seek到下一郑为了倒回之前,必须重新打开文件。

或者可以使用下述迭代器类

动态图迭代器类

class ImageSequence: def __init__(self, im): = im def __getitem__(self, ix): try: if ix: (ix) return except EOFError: raise IndexError # end of sequencefor frame in ImageSequence(im): # ...do something to frame...Postscript Printing

Pillow允许通过Postscript Printer在图片上添加images、text、graphics。

Drawing Postscriptfrom PIL import Imagefrom PIL import PSDrawim = ("")title = "lena"box = (1*72, 2*72, 7*72, 10*72) # in pointsps = () # default is _document(title)# draw the image (75 dpi)(box, im, 75)(box)# draw centered ("HelveticaNarrow-Bold", 36)w, h, b = (title)((4*72-w/2, 1*72-h), title)_document()

更多读取图片方法

之前说到Image模块的open()函数已经足够日常使用。该函数的参数也可以是一个文件对象。

从string中读取

import StringIOim = ((buffer))

从tar文件中读取

from PIL import TarIOfp = ("", "Imaging/test/")im = (fp)

草稿模式

draft()方法允许在不读取文件内容的情况下尽可能(可能不会完全等于给定的参数)地将图片转成给定模式和大小,这在生成缩略图的时候非常有效(速度要求比质量高的场合)。

draft模式

from __future__ import print_functionim = (file)print("original =", , )("L", (100, 100))print("draft =", , )

python颜色压缩的结果颜色比保存颜色深

今天帮师姐解决一个bug,测试了Python图像resize前后颜色不一致问题。

代码片段执行的功能:图像指定倍数超分辨率,输入为[0-1] float型数据,输出为格式不限的图像

bug:输入图像与输出图像颜色不一致

一、把产生bug的功能片段做分离测试:

1 import h5py

2 import numpy as np

3 import as plt

4 from PIL import Image

5 from scipy import misc

6

7

8 def get_result_array():

9 file_name = "./butterfly_"

10 img_no_expand = (file_name, flatten=False, mode='YCbCr')

11 img_no_expand = img_no_expand / 255.0

12 # img_no_expand = 8(img_no_expand*255)

13 h, w = img_no_[:2]

14 print(img_no_)

15 h *= 2

16 w *= 2

17 data = list()

18

19 ((img_no_expand[:, :, 0], [h, w], 'bicubic')[:,:,None])

20 ((img_no_expand[:, :, 1], [h, w], 'bicubic')[:,:,None])

21 ((img_no_expand[:, :, 2], [h, w], 'bicubic')[:,:,None])

22 data_out = (data, axis=2)

23 img = (arr=data_out, mode="YCbCr")

24 ("out_3.jpg")

25

26

27 if __name__=='__main__':

28 get_result_array()

运行代码:

左图为输入图像,右图为输出图像。为了便于对比,把输出图像缩放至与输入图像一致,由图可见,输出图像色彩严重失真。

二、在pycharm中,Ctrl+B 查看源码:

三、发现可以选择模式,猜想可能是模式有误:

四、在函数的实现的第一行,初始化Image类,猜想初始化参数设置错误。

五、在类的初始化过程中,默认图像的最大值为255,而实际输入是0-1的float型数据。找到了错误之处。

六、仔细查看文档,mode可以修改。0-1float型数据对应mode=“F”:

七、于是,在代码中加入参数:

八、插值后处理

插值之后部分像素点数值可能大于1,这时有两种做法,一种是归一化,一种是截断。经过实验发现,归一化操作往往会使图像整体亮度变暗,对图像整体视觉效果有较大影响,因此这里选择截断。

九、最终代码如下:

1 import h5py

2 import numpy as np

3 import as plt

4 from PIL import Image

5 from scipy import misc

6

7

8 def get_result_array():

9 file_name = "./butterfly_"

10 img_no_expand = (file_name, flatten=False, mode='YCbCr')

11 img_no_expand = img_no_expand / 255.0

12 # img_no_expand = 8(img_no_expand*255)

13 h, w = img_no_[:2]

14 print(img_no_)

15 h *= 2

16 w *= 2

17 data = list()

18 ((img_no_expand[:, :, 0], [h, w], 'bicubic', mode="F")[:,:,None])

19 ((img_no_expand[:, :, 1], [h, w], 'bicubic', mode="F")[:,:,None])

20 ((img_no_expand[:, :, 2], [h, w], 'bicubic', mode="F")[:,:,None])

21 data_out = (data, axis=2)

22 data_out[data_out > 1] = 1.0

23 data_out = 8(data_out * 255)

24 img = (arr=data_out, mode="YCbCr")

25 ("out_4.jpg")

26

27

28 if __name__=='__main__':

29 get_result_array()

< 上一篇 glide压缩图片-Android之 glide 框架 解读 下一篇 > 图片压缩 js-怎么用JavaScript在线压缩图片
相关推荐
独特的公益海报-公益海报有哪些风格
儿童海报制作简单-六一儿童节的宣传海报怎么做啊
春节海报-春节海报设计理念有哪些?
广府特色美食海报小学生怎么画?小学生海报怎么画
有没有制作海报的手机软件-在手机上做海报用什么软件好
蛋糕店宣传海报手绘-蛋糕活动海报怎么设计图片
最新模板
最新素材